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OIL LOW TO A LATERAL WELL IN THE PRESENCE OF BOTTOM WATER

UDC 532.546.06Yu. I. Kapranov and V. N. Émikh

Exact solutions are obtained for a number of two-dimensional problems of steady-state fluid flow to
a lateral hole in a reservoir with a quiescent bottom fluid of higher density or with a fluid of lower
density at the reservoir top.

Key words: lateral well, filtration velocity hodograph, mapping parameters, interface, critical
flow regime.

Introduction. In oil production practice, one often encounters situations in which the flow domain can be
divided with sufficient accuracy into several parts separated from each other by boundaries which are not known
beforehand. The fluid moving in each of the indicated subdomains differs in properties from the fluids in the
neighboring subdomains [1, 2]. One of the best-known problems related to flows of this type is the problem of the
so-called bottom water coning [2–4]. Approaches to constructing solutions for such problems, which are mostly of
approximate nature, have been developed most fully for straight holes. From a practical point of view, the main
goal of these approaches is to determine conditions under which bottom water breakthrough into a producing well
is impossible.

In recent decades, considerable attention has been paid to similar problems for the case of lateral holes,
which have a number of advantages over straight holes. In particular, being located along beddings, they have a
considerably larger are of contact with the oil pool, which provides much higher production rates. However, for
the same reason, in the case of bottom water through into a lateral hole, the rate of water encroachment is much
higher than that in the case of a straight hole. In view of the aforesaid, of particular importance are studies aimed
at finding the class of flows that are critical for water-free oil production.

Strictly speaking, such regimes can be analyzed only on the basis of exact solutions of the corresponding
problems. However, because the latter are difficult to solve, such solutions are few in number not only for unsteady
but also for steady-state problems. A simple analytical solution for the critical flow regime in an homogeneous,
infinitely thin inclined layer of infinite length was first obtained in [5] where a linear periodic chain of wells was
modeled by point drains. Among the advantages of the cited study is the simplicity of the solution constructed.
The present paper also deals with constructing exact solutions for the case of horizontal wells but, unlike in [5], the
formulation adopted here is more realistic.

1. Formulation of the Problem and Parametric Representation of the Solution. A general flow
diagram is presented in Fig. 1. The motion is considered steady-state and two-dimensional in the vertical plane
xOy, and the axis Ox is horizontal. It is assumed that the reservoir of thickness T is homogeneous and has finite
length and the bottom y = 0 of the reservoir and its top y = T are impermeable. At a distance H from the top
there is a producing lateral well, whose axis is perpendicular to the plane xOy. The well operates at a constant
capacity 2Q per its unit length. In the flow plane, it is modeled by a point A.

We consider flow of a fluid of density ρ1 and viscosity μ1 which moves from infinity to the well and is
symmetric about the Oy axis. At the bottom of the reservoir, separated from the main part of the flow by the
interface BC, there is a quiescent fluid of density ρ2 > ρ1 and viscosity μ2, which generally does not coincide
with μ1. The adopted model can be interpreted not only as oil pumping from a reservoir with underlying bottom
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Fig. 1. Flow domain in a reservoir with a bottom fluid.
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Fig. 2. Half-axis of the auxiliary complex variable.

Fig. 3. Domain of the complex potential.

water, but also, for example, as flow to a well in a water-bearing reservoir containing a heavier contaminated fluid.
With any of these interpretations, the primary goal is to calculate the reservoir production conditions that rule out
bottom fluid breakthrough into the well. Figure 1 shows the right half of the flow domain studied.

The corresponding boundary-value problem consists of finding the complex flow potential ω = ϕ+ iψ as an
analytical function of the coordinates z = x+ iy of the points of the filtration region under the following boundary
conditions:

AE: x = 0, ψ = 0; AB: x = 0, ψ = Q; ED: y = 1, ψ = 0;

CD: y = 0, ψ = Q; BC: ϕ− ρy = const, ψ = Q [ρ = (ρ2 − ρ1)/ρ1].
(1)

Here and below, use is made of the functions ω and z normalized by the quantities κ1T and T (κ1 is the filtra-
tion coefficient of the moving fluid). The first condition in the domain BC is a consequence of the assumption
of motionless bottom water and the dynamic condition of pressure continuity in passing through the oil–water
interface [1–3].

For a parametric representation of the solution, the domain of the complex potential ω (Fig. 3) and the
domain of the function 1/w (Fig. 4) performing inversion of the filtration velocity hodograph w̄ = wx + iwy (Fig. 5)
with respect to a unit circle with center at the coordinate origin are mapped onto the half-plane Im ζ � 0 (Fig. 2).
The maps can be represented as

ω = ωC − Q(1 − a)
π

ζ∫

c

dζ

(ζ − a)(1 − ζ)
= ωC − Q

π
ln

(ζ − a)(1 − c)
(1 − ζ)(c − a)

; (2)
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Fig. 4. Domain of inversion of the velocity hodograph.

Fig. 5. Domain of the velocity hodograph.

1
w

=
dz

dω
= iM

ζ∫

a

(f − ζ)(r − ζ) dζ
(c− ζ)(−ζ)√−ζ = 2iM

{
Z

[
1 +

fr

c
√
aζ

]
+ σ[G(ζ) −G]

}

(−∞ < ζ � 0),
(3)

where

Z =
√−a−

√
−ζ, G(ζ) = arctan

√
−c/ζ, G = G(a), σ = (f − c)(c− r)/

√
c3. (4)

The main problem is to find the parameters a, c, f , r, and M included in representations (2)–(4). To
determine the quantity ωC contained in dependence (2), one needs to specify the value ω at a certain point of the
reservoir, which will be required in Sec. 4 for a different formulation of the problem. In the adopted formulation
with the well capacity specified, in which the pressure can be determined only to within an arbitrary constant, such
detailing is not necessary.

2. Critical Flow Regime. As a first step, we study restrictions on the parameter Q that rule out bottom
water breakthrough into the well. We consider the case r = 0. In this case, the domain ω and their corresponding
dependence (2) are preserved, and in the domain w̄, the vertex R of the arc cut reaches the wy axis and coincides
with the point B. As a result, the half-circle {|w − iρ/2| � ρ/2, wy � 0} falls out of the hodograph, and the
quadrant {Im (1/w) � 1/ρ,Re (1/w) � 0} falls out of the domain of inversion of the hodograph. In Figs. 4 and 5,
the indicated subdomains are shaded in two directions. The points B and R, corresponding to this limiting case
and the point C in Fig. 1 are enclosed in circles.

The relation

p = −ρ1g(ϕ+ y) (5)

implies the inequality dp/dy = −ρ1g(wy + 1) � −ρ2g, which is satisfied on the segment AB. In this case, the
equality characterizing the hydrostatic equilibrium of the underlying fluid is preserved only at the point B, and
at the points of the segment AB, the hydrodynamic pressure gradient exceeds the stabilizing effect of gravity on
bottom water, and a further arbitrary small pressure decline should entrain it in the flow. Thus, in the critical
regime, the maximum admissible wells capacity is determined.
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According to the above-mentioned changes in the hodograph inversion domain, dependence (3) for the
boundary segment EAB becomes

1
w

= 2iM [τ(−a) − τ(−ζ)], τ(t) =
f − c√

c
arctan

√
t

c
+
√
t. (6)

For ζ = 0 and w = −iρ, this leads to

2ρMτ(−a) = 1. (7)

On the segment BC (0 � ζ � c), in view of (6), we have

1
w

= i
1
ρ
−M

ζ∫

0

(f − ζ) dζ
(c− ζ)

√
ζ
.

Comparing the increments of both sides of the last equality in circulation about the point C (see Fig. 4), we obtain

M =
√
c/[πρ(f − c)]. (8)

Substituting this expression instead of M into (7) and using representations (4) and (6) for G and τ(t), respectively,
we obtain the relation

√−ac/(f − c) = G.

In view of equality (8), the parameters M and f can be expressed in terms of a and c:

M = G/(πρ
√−a), f = c+

√−ac/G. (9)

Using (9), we represent relation (6) as

1
w

= i
2
πρ

(
G(ζ) −

√
ζ

a
G

)
(−∞ < ζ � 0). (10)

On the other two segments of the real axis of the plane ζ, the indicated relation is rearranged as follows:

1
w

= − 1
πρ

(
Λ(ζ) + 2

√
− ζ
a
G

)
+ i

1
ρ

(0 � ζ � c); (11)

1
w

= − 1
πρ

(
Λ(ζ) + 2

√
− ζ
a
G

)
, Λ(ζ) = ln

∣∣∣
√
ζ +

√
c√

ζ −√
c

∣∣∣ (c � ζ <∞). (12)

According to (3), the equality dy/dx = Im (1/w)/Re (1/w) holds at each point of the flow domain. In view
of (11), this leads to lim

ζ→+0
(dy/dx) = −∞. Thus, in the limiting case considered, the point B is an apex of the

interface BC.
Setting ζ = 1 and w = −Q in equality (12), we obtain the equation

Π − 2G/
√−a = 0, (13)

where

Π =
πρ

Q
− ln

1 +
√
c

1 −√
c
. (14)

Equation (13) uniquely defines the dependence c = c(a) at each point of the half-axis a < 0; c ∈ (0, 1).
The physical parameters to be specified include the depth H (reckoned from the top of the reservoir) of the

point drain A which models the well (see Fig. 1). Using the first equality in (3) and relations (2) and (10), for the
quantity H we obtain the representation

H =
2Q(1 − a)

π2ρ

a∫

−∞

√
ζ/aG−G(ζ)

(a− ζ)(1 − ζ)
dζ, (15)

which is used to find the parameter a. In this case, the right side of (15) is treated as a complex function F (a) of
the parameter a, i.e., as c it uses the dependence c = c(a) determined from (13). Numerical calculations show that
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TABLE 1

H
V

q = 0.2 q = 0.5 q = 1 q = 5 q = 10 q = 50 q = 100

0 0.8047 0.2788 0.1021 0.0052 0.0013 52 · 10−6 13 · 10−6

0.1 0.7582 0.2629 0.0967 0.0049 0.0012 50 · 10−6 12 · 10−6

0.2 0.6523 0.2229 0.0823 0.0042 0.0011 43 · 10−6 12 · 11−6

0.3 0.5188 0.1716 0.0630 0.0033 82 · 10−5 33 · 10−6 82 · 10−7

0.4 0.3776 0.1193 0.0431 0.0022 56 · 10−5 22 · 10−6 56 · 10−7

0.5 0.2447 0.0731 0.0257 0.0013 33 · 10−5 13 · 10−6 33 · 10−7

0.6 0.1337 0.0377 0.0128 62 · 10−5 16 · 10−5 62 · 10−7 16 · 10−7

0.7 0.0559 0.0150 0.0048 22 · 10−5 56 · 10−6 22 · 10−7 56 · 10−8

0.8 0.0148 0.0037 0.0011 48 · 10−6 12 · 10−6 48 · 10−8 12 · 10−8

0.9 0.0014 29 · 10−5 77 · 10−6 31 · 10−7 78 · 10−8 31 · 10−9 78 · 10−10

the function F (a) increases monotonically from 0 to 1 as the parameter a varies from −∞ to 0. By virtue of this,
the parameters a and c are uniquely determined in their intervals of variation for any value of H ∈ (0, 1). After
that, the parameters M and f are calculated from formulas (9).

After finding all mapping parameters, we determine the distance H0 from the drain A to the apex B of the
bottom water cone (see Fig. 1). The expression for this quantity is also found taking into account relation (10)
[compare with (15)]:

H0 =
2Q(1 − a)

π2ρ

0∫

a

G(ζ) − √
ζ/aG

(ζ − a)(1 − ζ)
dζ.

Integration of the first equality in (3) with the use of relations (2) and (11) yields the complex-parametric
equation for the interface BC between oil and water:

x+ iy =
Q(1 − a)
π2ρ

ζ∫

0

Λ(ζ) + 2
√−ζ/aG

(ζ − a)(1 − ζ)
dζ + i

(
H1 − Q

πρ
N(ζ)

)
,

N(ζ) = ln
ζ − a

(1 − ζ)(−a) .
(16)

Setting ζ = c, x = L, and y = 0, we obtain formulas for the width L and height H1 of the bottom water crest:

L =
Q(1 − a)
π2ρ

c∫

0

Λ(ζ) + 2
√−ζ/aG

(ζ − a)(1 − ζ)
dζ, H1 =

Q

πρ
N (N = N(c)).

The quantities H , H0, and H1 are linked by the relation H +H0 +H1 = 1, which can be used as a control one or
to find one of the two quantities H0 and H1 if the other is known.

One of the basic flow characteristics calculated for the critical regime is the maximum volume V of bottom
water that remains motionless for the given well capacity Q:

V =

c∫

0

y
(dx
dζ

)
dζ. (17)

The coordinates x and y of the interface BC contained in the right side of this expression are determined in (16).
The dependence on the quantities Q and ρ in Eqs. (13) and (15) and in all relations obtained on the basis

of the representation for z is expressed only in terms of the relation q = Q/ρ. This implies that the mapping
parameters and geometrical flow characteristics (including V ) are invariant under a proportional change in Q and ρ.
Table 1 gives values of V calculated for various values of H and q for the limiting case considered. From the table
it follows that, for small values of the quantity V , it is inversely proportional to q2. In view of the dependences
for 1/w, the aforesaid implies that, with proportional changes in the quantities Q and ρ, the filtration velocity
components at each point of the flow also change proportionally.
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Below, the subscript asterisk denotes the filtration characteristics and the mapping parameters calculated
for the critical regime if their values generally differ from the limiting ones.

In practice, the critical pumping regime can be identified by increasing the well capacity until bottom water
begins to invade the well. The initially unknown volume V of bottom water is calculated from formula (17) and is
then used as one of the parameters determining the flow characteristics in the normal regime, where Q < Q∗.

3. General Case. Relations (2) and (3), used in the solution of the boundary-value problem, generally
contain five unknown parameters: M , a, c, f , and r. As for the critical regime, the algorithm for finding these
parameters ultimately reduces to solving the system of equations for the parameters a and c, in terms of which the
parameters M , f , and r should first be expressed.

On the segment BC (0 � ζ � c), equality (3) is represented as

1
w

= −M
(
2

Φ(ζ)√
ζ

+ σΛ(ζ)
)
− 2iM

(ac+ fr

c
√−a − σ arctan

√
−a
c

)
, Φ(ζ) = ζ +

fr

c
, (18)

where the function Λ(ζ) is defined in (12). Comparing the increments of both sides of equality (18) in circulation
about the point C and using expressions (4) for σ, we obtain

M =
1
πρ

√
c3

(f − c)(c− r)
. (19)

Since Im (1/w) = 1/ρ on BC, by virtue of (18) and (19), we have

−ac− fr

(f − c)(c− r)
=

√
−a
c
G. (20)

On the segment CE (c � ζ <∞), the dependence for 1/w becomes

1
w

= −2M
(√

ζ +
fr

c
√
ζ

)
− 1
πρ

Λ(ζ).

Setting ζ = 1 and w = −Q and using (19) and (20), from this we obtain

Π − 2
√
c (c+ fr)

(f − c)(c− r)
= 0, (21)

where the function Π is defined in (14). Eliminating the parameter f from equality (21) in view of (20), we have
the equation

Ar2 +Br + C = 0,

B = 2(1 − c)
√−aG− (c− a)Π − 2(1 − a)

√
c, (22)

A = 2
√−aG+ Π, C = −ac(Π − 2G/

√−a ).

Because the interchange of the parameters f and r does not change the dependences leading to Eq. (22), by
eliminating the parameter r from (21), we obtain an equation for f similar to (22), which has the following roots:

r1,2 = −B ±
√

Δ (Δ = B2 − 4AC). (23)

From equality (21), it follows that Π > 0. In view of this and using the estimate G <
√−c/a, we have

B < 0, Δ > 0.

From this, we conclude that roots (23) of Eqs. (22) are real. The smaller root r2 is contained in the interval (0, c),
thus determining the parameter r (see Fig. 5), and the larger root satisfies the inequality r1 > c and determines the
parameter f . Because the roots of Eq. (22) are positive for the examined flow model, the condition C > 0 should
be satisfied, i.e.,

F (a, c) = Π − 2G/
√−a > 0. (24)

By virtue of Eqs. (19), (20), and (22), finding the unknown mapping parameters reduces to determining the
parameters a and c for the same quantities H and V as in the limiting case.
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Integration of (3) with the use of (2) yields

H =
2Q(1 − a)

π2ρ

a∫

−∞

[G−G(ζ)] − πρMZ[1 + fr/(c
√
aζ )]

(a− ζ)(1 − ζ)
dζ. (25)

Using relations (2), (3), and (17), we obtain the parametric representation of the interface BC

x+ iy =
Q(1 − a)
π2ρ

ζ∫

0

2πρMΦ(ζ) + Λ(ζ)
√
ζ

(ζ − a)(1 − ζ)
√
ζ

dζ + i
(
H1 − Q

πρ
N(ζ)

)
. (26)

The function N(ζ) included in this representation is defined in (14).
According to (17) and (26), the quantity V is given by the equality

V = H1L− Q2(1 − a)
π3ρ2

c∫

0

2πρMΦ(ζ) + Λ(ζ)
√
ζ

(ζ − a)(1 − ζ)
√
ζ

N(ζ) dζ. (27)

The quantities L and H1 are calculated using (26) for ζ = c.
The parameters a and c from Eqs. (25) and (27) are calculated using nested iterations. The right side of

Eq. (27) is treated as a complex function of the parameter c. This implies that, for each value of c fixed during the
solution of the equation, the parameter a is determined from Eq. (25). It is established numerically that the right
side of Eq. (25) increases monotonically from zero to a certain value of H∗ > H as the parameter a increases from
−∞ to a∗, and the right side of Eq. (27) increases from zero to V∗ > V as the parameter c increases from zero to
the values c∗, which, similarly to the value a∗, is calculated previously for the limiting flow regime with a chosen
value Q < Q∗. The aforesaid provides unique solvability of the iterative procedure described above; in this case,

a ∈ (−∞, a∗), c ∈ (0, c∗). (28)

From a physical point of view, the inequality V∗ > V implies that smaller well capacities correspond to larger
values of the maximum volume V∗ of bottom water that remains in the state of rest.

Reverting to inequality (24), we note that the function F (a, c) contained in it increases monotonically with
decreases in each of the parameters a and c. In view of (13), from this it follows that, under restrictions (28),
inequality (24) is satisfied. During the solution of system (25), (27), we also calculate the parameters f , r, and M
included in them. Using relations (22) and (23), it is possible to show that, in the limiting case, for r2 = C = 0,
the root r1 = −B/A is defined by the same expression as the parameter f in (9).

From relations (2) and (3), the quantity H0 is expressed as

H0 =
2Q(1 − a)

π2ρ

0∫

a

[G(ζ) −G] + πρMZ[1 + fr/(c
√
aζ )]

(ζ − a)(1 − ζ)
dζ.

The calculations can generally be checked using the relation H +H0 +H1 = 1.
4. Modification of the Initial Formulation of the Problem. Let us assume that, at identical distances

from the well on both sides of it, there are external reservoir boundaries with specified pressure heads; in this case,
the flow symmetry about the plane x = 0 of the initial formulation of the problem is preserved. The flow domain
also includes the internal equipotential that has a common point A1 with the well contour; the pressure p1 at this
point should be specified. The boundary equipotentials of the filtration region are denoted in Figs. 1 and 3 by
dashed curves.

The wellbore pressure p0 can be measured directly in the well. It is linked to the quantity p1 by the relation
Δp = p1 − p0, where Δp characterizes the pressure losses during fluid passage through the well filter. The quantity
Q is to be determined.

In the formulation considered (unlike in the initial one), one should previously determine the constant ωC in
representation (2) for the potential ω, which is linked to the pressure by relation (5). For this, we use the condition

pD1 = ϕD1 = 0. (29)

According to (29), the lower point D1 of the external boundary is taken to be the reference point for the pressure
and potential; in this case, in the flow domain, p < 0 and ϕ > 0.
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Fig. 6. Flow domain in a reservoir with a fluid under the top of the reservoir.

The basis of the computational algorithm is the finding of the capacity Q ∈ (0, Q∗) at p1 = p0 + Δp, where
p0 ∈ (0, p0∗) is the specified well pressure. Ultimately, this procedure reduces to numerical solution of the equation

p0
1 =

p1

ρ1g
= −ϕ1 −H0 −H1 +

δ

2
, ϕ1 = ϕA1 =

Q

π
ln

(d1 − a)(1 − a1)
(a1 − a)(1 − d1)

. (30)

Here d1 and a1 are the affixes of the points D1 and A1, respectively, calculated from the specified coordinates
xD1 = L1 and yA1 = H0 + H1 − δ/2 on the interface. The expression for the quantity ϕ1 in (30), which is equal
to the potential difference across the well and the external boundary, is obtained from relations (2), in which the
constant ϕC is determined on the basis of (29).

For each value of Q, fixed during the solution of Eq. (30), the parameters M , a, c, f , and r are calculated
using the algorithm described in Sec. 3. The implementation of this algorithm involves restrictions (28), the second
of which allows one to obtain the parameter r as one of the roots of Eq. (22). According to this, the sequence of
solution of subsystem (25), (27) changes: the left side of Eq. (25) is treated as a complex function of the parameter
a ∈ (−∞, 0), and the parameter c is determined in the internal cycle of the iterative procedure by solving Eq. (27). In
each step of the cycle, the upper bound c∗ of the admissible values of the parameter c dependent on the parameters a
and Q is calculated previously from relation (13). Equation (30) is solved assuming that the function p(Q) increases
monotonically for Q ∈ (0, Q∗). This fact was established numerically.

5. Case of a Quiescent Fluid of Lower Density at the Reservoir Top. We assume that, above a
fluid flow of density ρ2 and viscosity μ2 there is a fluid of density ρ1. The latter has viscosity μ1, which, generally
speaking, differs from μ2 and is adjacent to the top of the reservoir. In this case, the domain z presented in Fig. 6 is a
specular reflection of the initial filtration region in the x axis. In the boundary-value problem, boundary conditions
(1) are preserved, including the first condition on BC, in which the parameter ρ is given by the equality

ρ = (ρ2 − ρ1)/ρ2. (31)

For ρ1 = 0 and ρ = 1, equality (31) becomes the well-known condition on the free surface, and the boundary-value
problem describes filtration to a well in a gas-capped oil reservoir.

The domains of the remaining functions used in the solution of the problem, are symmetric, as in the
domain z, to the corresponding domains presented In Figs. 2–5 about the abscissa. This implies that all the
analytical dependences obtained above are extended to the flow considered. Nevertheless, for the same determining
physical parameters, the corresponding filtration characteristics are different since, for the same densities ρ1 and
ρ2, the parameter ρ of the initial flow model and the one considered here has different values.

The maximum volume of the fluid which is quiescent above the flow for the specified well capacity is deter-
mined, as before, for the critical regime in which the point B becomes the apex of the line of intersection. In this
case, p = −ρ2g(ϕ− y), and the relation wy = dϕ/dy � ρ for the parameter ρ defined according to (31) leads to the
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inequality dp/dy = −ρ2g(wy − 1) � −ρ1g. Thus, in the case considered, the critical flow regime also occurs on the
verge of violation of the hydrostatic equilibrium of the quiescent fluid.

6. Numerical Calculations and Flow Analysis. The analytical dependences obtained were used to
develop algorithms for calculating flow characteristics. In each of the two formulations of the boundary-value
problem considered above, the determining physical parameters are the densities of the filtering and quiescent fluids
and the distance from the reservoir top to the point drain A modeling the well, and if the well pressure is specified,
the determining parameters include the well diameter (in this case, the flow model includes the external boundary).

As regards the well capacity or the well pressure, before specifying any of these parameters, one should
find its maximum admissible value in the critical regime and the volume V of the fluid that remains motionless
during well pumping (this quantity is included in the number of determining physical parameters during subsequent
calculations for the normal flow regime).

Let us consider an example of calculations using the computational procedure described above for a particular
combination of input parameters, assuming ρ1 = 0.8, ρ2 = 1, and H = 0.2 and specifying the pressure in a well
of diameter δ = 0.01 and the abscissa L1 = 3 of the point D1 of the external boundary. The superscript 0 of the
piezometric height p0 = p/(ρ1g) used in the calculations is omitted.

Let us assume that a lighter fluid is filtered. In this case, according to (1), we have ρ = 0.25. For the critical
regime, we set Q = Q∗ = 1 and p0 = p0∗ = −6; hence, V = 0.006 55, H1 = 0.1729, L = 0.1131, and p1∗ = −5.0624.
Thus, the value Δp = 0.9376 is set equal to the pressure losses during fluid passage through the filter. Using this
parameter to correct the quantity p0, in the further calculations, we can assume that the pressure p1 is specified at
the point A1 on the well. In each calculation, the parameters determining the flow include the volume V of bottom
water found from Eq. (27) for the critical regime.

For p1 = −4, −2, −1, −0.8, and −0.7971, we obtain Q = 0.7510, 0.2824, 0.0480, 0.0012, and 0.0005,
H1 = 0.0981, 0.0535, 0.0260, 0.0063, and 0.0044, and L = 0.1322, 0.2020, 0.3933, 1.7526, and 2.6338. According
to (30), for p1 = −0.8 and −0.7971, the potential difference across the well and the external boundary decreases to
values ϕ1 = 0.0050 and 0.0021 respectively, resulting in almost complete cessation of the fluid influx into the well
and water spread over the reservoir bottom.

The well depth and the specified well pressure (or capacity) are technological parameters that determine the
pumping conditions. In a particular situation, they should be matched to the native state reservoir characteristics.
These parameters include the quantities V and ρ, and in the formulation with specified well pressure, they also
include the reservoir pressure and the distance from the external boundary to the well. The maximum well capacity
without bottom water influx is reached for wells located directly under the reservoir top, i.e., at H = 0. In the
example considered, for such a well in the critical regime, we obtain Q∗ = 1.1085 and p1∗ = −7.2376.

That considerable increase in the extent of pumping, compared to the value calculated for H = 0.2, is due to
an increase in both well productivity and well depth. Therefore, for the normal pumping regime, it is reasonable to
lay wells as deep as is possible for the given capacity without water influx, thus minimizing the effect of gravity. For
example, if Q = 0.1, the normal pumping regime is preserved up to the value H = 0.7978, for which p1 = −0.6339,
whereas for H = 0, we have p1 = −1.5559.

For fixed pressure on the well and the external boundary, the distance L1 between them is one of the main
parameters determining the flow rate. Thus, for H = 0.2 and p1 = −4, as L1 increases from 3 to 7, the capacity
Q decreases from 0.7510 to 0.3877. In this case, water spreads over the reservoir bottom: H1 = 0.0981 and 0.1322,
L = 0.0627 and 0.1776, respectively. We note that, even for L1 = 3, the equipotential is taken to be the external
boundary is almost vertical: it reaches the reservoir top at the point with the abscissa x = 3.00008.

Another characteristic to be determined is the maximum filtration velocity on the boundary of the flow
domain |wF | and the abscissa xF of the point F at which this velocity is reached. According to calculations, the
point F is on the top or bottom for the well operating at the top or bottom of the reservoir, respectively, and its
position is almost independent of the well pressure, whereas the dependence |wF |(Q) is nearly proportional. For
the chosen input parameters over the entire range of the well pressure, xF = 0.215 and |wF |/Q = 1.70 (differences
are observed only in the next decimal places).

The parameter ρ has a significant effect on the volume V of the bottom fluid that remains motionless during
well pumping; for real values of the parameter ρ are estimated at a few hundredth, the quantities H1 and L are
approximately proportional to this parameter and the quantity V is approximately proportional to its square.
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However, the main structural characteristics of the flow are little affected by changes of ρ.
In support of the aforesaid, we give the results of calculations for H = 0.2, δ = 0.01, Q = 1, L1 = 3,

and ρ = 0.2500, 0.0250, and 0.0025. For these values of the parameter ρ for the critical flow regime, we have
H1 = 0.17288, 0.01776, and 0.00177, L = 0.113 064, 0.011306, and 0.001131, and V = 66 · 10−4, 67 · 10−6, and
67 · 10−8, respectively; at the same time, for all three versions, we obtained the values p1 = −5.062, xF = 0.2146,
and wF = −1.701. The same regularities are also observed for great well depths. In particular, for H = 0.8 and the
three values of ρ indicated above (the remaining input parameters being the same), we have V = 74 ·10−6, 75 ·10−8,
and 75 · 10−10, H1 = 0.018622, 0.001875, and 0.000187, L = 0.011936, 0.001194, and 0.000119, p1 = −4.469,
xF = 0.2146, and wF = −1.701, respectively. We note that, in both series (for h = 0.2 and 0.8), the values of xF

and wF are identical, and the only difference is that, in the first series, the point F is at the top of the reservoir,
and in the second series, it is at its bottom.

The invariance (noted in Sec. 2) of the geometrical characteristics of the flow under changes in the quantities
Q and ρ with the retention of their ratio is also true for the general case, and the filtration velocity components at
each point change, as in the critical regime, in proportion to the indicated quantities.

In the case H = 0, where the drain A located at the reservoir bottom, is coincident with the corner point
E, we have a = −∞. In this case, the relations obtained above and the computational algorithms based on them
become much simpler. In particular, for the critical regime, the equality L ≈ ρ/(2Q) holds with high accuracy.
A nearly linear dependence L(ρ) for the general case was obtained in the example of numerical calculations given
above.

We now assume that a heavier fluid is filtered. According to (31) for the former values ρ1 = 0.8 and ρ2 = 1,
we have ρ = 0.2. The quantity H is the distance from the reservoir bottom to the drain A (see Fig. 6). All details of
the analysis performed above are extended to this situation taking into account the reorientation of the flow domain
relative to the reservoir top and bottom noted in Sec. 5. In particular, for H = 0.2 and Q = 1 for the critical
regime which is the initial one in the calculations, we have V = 0.00422, p1 = −5.0623, H1 = 0.1396, L = 0.0905,
xF = 0.2146, and wF = −1.7013. A comparison of these values with those obtained for ρ = 0.25 confirms the
conclusion that the quantity ρ has a significant effect only the parameters of the cone of the quiescent fluid adjacent
to the reservoir top in this case. The point F of the maximum filtration velocity is now at the reservoir bottom.

We now consider the case ρ1 = 0, ρ = 1 noted in Sec. 5, which is equivalent to fluid filtration in a gas-capped
reservoir. In this version for H = 0.2 and Q = 1 for the critical regime, we obtain V = 0.0823, p1 = −5.0833,
H1 = 0.5180, L = 0.4525, xF = 0.2164, and wF = −1.7196. The volume V of the gas cap that partially penetrates
into the reservoir bottom far exceeds the above value found for ρ1 = 0.8. We note that, in this case, the well
capacity Q = 1 is provided at almost the same pressure p1 on the well boundary as in the previous calculation
version.

Conclusions. Exact solutions of some steady-state problems of fluid influx to a lateral well were constructed
for the cases where the reservoir also contains a fluid having different physical parameters and adjacent to the
reservoir bottom or top. An algorithm for calculating the auxiliary parameters in the direct formulation was
developed. Calculations were performed that allowed a description of the geometrical properties of the flow domain
versus well depth, capacity, and pressure. It was shown that the critical flow regime play the determining role in
estimating the range of oil reservoir production conditions that rule out the breakthrough of bottom water into the
well.

This work was supported by the Russian Foundation for Basic Research (Grant No. 03-05-65299).
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